gs-Drazin inverses of generalized matrices over local rings

نویسندگان

چکیده

An element a in ring R has gs-Drazin inverse if there exists b ? comm2(a) such that = b2a, ab Rqnil. For any s C(R), we completely determine when generalized matrix A Ks(R) over local inverse.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Group Inverses and Drazin Inverses over Banach Algebras

For a matrix over a complex commutative unital Banach algebra, necessary and suucient conditions are given for the existence of its group inverse, and more generally, its Drazin inverses. The conditions are easy to check and explicit formulas for the inverses are provided. Some properties of the inverses and an application to operator theory are discussed. This note is a continuation of an earl...

متن کامل

Generalized Drazin inverse of certain block matrices in Banach algebras

Several representations of the generalized Drazin inverse of an anti-triangular block matrix in Banach algebra are given in terms of the generalized Banachiewicz--Schur form.  

متن کامل

R-Matrices and Generalized Inverses

Four results are given that address the existence, ambiguities and construction of a classical R-matrix given a Lax pair. They enable the uniform construction of R-matrices in terms of any generalized inverse of adL. For generic L a generalized inverse (and indeed the Moore-Penrose inverse) is explicitly constructed. The R-matrices are in general momentum dependent and dynamical. The constructi...

متن کامل

Generalized Inverses of a Sum in Rings

We study properties of the Drazin index of regular elements in a ring with a unity 1. We give expressions for generalized inverses of 1−ba in terms of generalized inverses of 1−ab. In our development we prove that the Drazin index of 1 − ba is equal to the Drazin index of 1 − ab. 2000 Mathematics subject classification. primary 15A09; secondary 16U99.

متن کامل

On generalized inverses of banded matrices

Bounds for the ranks of upper-right submatrices of a generalized inverse of a strictly lower k-banded matrix are obtained. It is shown that such ranks can be exactly predicted under some conditions. The proof uses the Nullity Theorem and bordering technique for generalized inverse.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2022

ISSN: ['2406-0933', '0354-5180']

DOI: https://doi.org/10.2298/fil2206991c